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Abstract. In this paper we propose the use of an HMM-based phonetic
aligner together with a speech-synthesis-based one to improve the
accuracy of the global alignment system. We also present a phone
duration-independent measure to evaluate the accuracy of the automatic
annotation tools. In the second part of the paper we propose and evaluate
some new confidence measures for phonetic annotation.

1 Introduction

The flourishing number of spoken language repositories has pushed speech re-
search in multiple ways. Much of the best speech recognition systems rely on
models created with very large speech databases. Research into natural prosody
generation for speech synthesis is, nowadays, another important issue that uses
large amounts of speech data. These repositories have allowed the development
of many corpus-based speech synthesizers in the recent years, but they need
to be phonetically annotated with a high level of precision. However, manual
phonetic annotation is a very time-consuming task and several approaches have
been taken to automate this process. Although state-of-the-art segmentation
tools can achieve very accurate results, there are always some uncommon acous-
tic realizations or some kind of noise that can badly damage the segmentation
performance for a particular file. With the increasing size of speech databases
manual verification of every utterance is becoming unfeasible, thus, some con-
fidence scores must be computed to detect possible bad segmentations within
each utterance. The goal of this work is the development of a robust pho-
netic annotation system, with the best possible accuracy, and the development
and evaluation of confidence measures for phonetic annotation process. This
paper is divided into 4 sections, the section 2 describes the development of the
proposed phonetic aligner. In the following section (section 3), we describe
and evaluate the proposed confidence measures, and the conclusions in the
last section.
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2 Automatic Segmentation Approaches

Automatic phonetic annotation is composed of two major steps, the determi-
nation of the utterance phone sequence, the sequence produced by the speaker
during the recording procedure, and the temporal location of the segment bound-
aries (phonetic alignment). Several phonetic alignment methods have been pro-
posed, but the most widely explored techniques are based either on Hidden
Markov Models (HMM) used in forced alignment mode [1] or on dynamic time
alignment with synthesized speech [2]. The main reason of the superiority of two
techniques is their robustness and accuracy, respectively. An HMM-based aligner
consists of a finite state machine that has a set of state occupancy probabili-
ties in each time instant and a set of inter-state transition probabilities. These
probabilities are computed using some manually or automatically segmented
data (training data). On the other hand, the speech-synthesis-based aligners are
based on a technique used in the early days of the speech recognition. A syn-
thetic speech signal is generated with the expected phonetic sequence, together
with the segment boundaries. Then, some spectral features are computed from
the recorded and the generated speech signals, and finally the Dynamic Time
Warping (DTW) algorithm [3] is applied to compute the aligned path between
the signals for which there is a better match between the spectral features. The
reference signal segment boundaries are mapped into the recorded signal us-
ing this alignment path. A comparison between the results of HMM-based and
speech-synthesis-based segmentation [4] has showed that in general (about 70%
of times) the speech-synthesis-based segmentation is more accurate than the
HMM-based one, however, it tends to generate few large boundary errors (when
it fails it fails badly). This means that the HMM-based phonetic aligners are
more reliable.

The lack of robustness of the speech-synthesis-based aligners as well as its
better boundary location accuracy suggested the development of an hybrid sys-
tem, a system as accurate as the speech-synthesis-based aligner and with the
robustness of the hmm-based aligners.

2.1 Speech Synthesis Based Phonetic Aligners

The first conclusion taken from the usage of some commonly used speech-
synthesis-based aligners is that the acoustic features does not prove to be equally
good for locating the boundaries for every kind of phonetic segment. For instance,
although the energy is, in general, a good feature to locate the boundary between
a vowel and a stop consonant, it performed poorly on locating the boundary be-
tween two vowels. Thus, some experiments were performed with multiple acous-
tic features and multiple segment transitions to find the best acoustic features
to locate the boundaries between each different pair of phonetic segments. This
acoustic feature selection considerably increased the robustness of the result-
ing aligner. The reference speech signal was generated using the Festival Speech
Synthesis System [5] using a Portuguese voice recorded at our lab. A detailed
description of this work can be found in [6].



38 S. Paulo and L.C. Oliveira

2.2 HMM Based Phonetic Aligners

Once the speech-synthesis-based aligner was built with a good enough robust-
ness, it was used to generate the training data for the HMM-based aligner. Given
the amount of available training data, context-independent models were chosen
for the task. Figure 1 shows the different phone topologies. The upper one is
used for all phonetic segment but the silence, semi-vowels and shwa. The central
topology is used to represent segments with short durations like the semi-vowels
and shwa, by allowing a skip between and first and last states. The silence
model is the lower one. In this case a transition from the first state to the last
as well as another one from the last to the first state can be observed, this can
be used to model very large variations on the duration of the silences in the
speech database. Each model states consists of a set of eight gaussian mixtures.
The adopted features were the Mel-Frequency Cepstrum Coefficients, their first
and second order differences and the energy and its first and second differences.
Each frame is spaced by 5-miliseconds , with a 20-milisecond long window. The
training of the model was preformed by using the HTK toolkit.

Fig. 1. Three HMM topologies were used for the different kinds of phonetic segments.
The upper one is the general model, the central topology in used for semi-vowels and
shwa, and the last one for the silence

2.3 Segment Boundary Refinement

As expected, using the HMM-based aligner, a more robust segmentation was
obtained. The next step was to use our speech-synthesis-based aligner to refine
the location of the segment boundaries.

2.4 Segmentation Results

Two of the most common approaches to evaluate the segmentations’ accuracy
is to compute of the phonetic segment percentage that have boundary location
errors less than a given tolerance (often 20 ms), or the root mean square error of
the boundary locations. Although these can be good predictors for aligners’ ac-
curacy, it is clear that an error of about 20 ms in a 25-ms long segment is much
more serious that the same error in a 150-ms long segment. In the first case
the segment frames are almost always badly assigned. This way, a phone-based
duration-independent measure is proposed to evaluate the aligners’ accuracy,
that is to determine the percentage of well assigned frames, within the segment.
We will call it the Overlap Rate (OvR). Fig. 2 illustrates the computation of
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this measure. Given a segment, a reference segmentation (RefSeg), and the seg-
mentation to be evaluated(AutoSeg), OvR is the ratio between the number of
frames that belong to that segment in both the segmentations (Common Dur
in the fig. 2) and the number of frames that belong to the segment in one seg-
mentation, at least(Dur max if the fig. 2). The following equation illustrates the
computation of OvR:

OvR =
Common Dur

Dur max
=

Common Dur

Dur ref + Dur auto − Common Dur
(1)

seg=A

seg=A

... ...

... ...

Dur_ref

Dur_auto

Dur_max

RefSeg

AutoSeg

Common_Dur

Fig. 2. Graphical representation of the quantities involved in the computation of the
Overlap Rate

Regarding the equation 1, one can realize that if, for example, a phone du-
ration in the reference segmentation differs considerably from its duration in
the other segmentation, the OvR quantity takes a very small value. Let X be
the Dur ref , Y the Dur auto and z the Common Dur of Fig. 2, and suppose
X ≤ Y , thus:

0 ≤ OvR =
z

X + Y − z
≤ X

Y
(2)

since the number of common frames (z) is at most the same as the minimum
number of frames in the two annotations of the given segment. This way, one
can conclude that this measure is duration independent, and is able to produce
a more reliable evaluation of the annotation accuracy.

Figure 3, shows the accuracy of the three developed annotation tools. The
x-axis is the percentage of incorrectly assigned frames ((1−OvR)·100%) and the
y-axis is the percentage of phones that has a percentage of incorrectly assigned
frames lower than the value given in the x-axis. The solid line represents the
accuracy of the HMM-based aligner, the dashed line is the accuracy of the speech-
synthesis-based aligner when it is used to refine the results of the HMM-based
aligner. The dotted line represents the accuracy of the speech-synthesis-based
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Fig. 3. Annotation accuracy for the three tested annotation techniques

aligner when no other alignments were available. In fact, these results are not a
fair comparison among the multiple annotation tools, because the HMM-based
aligner is an aligner adapted to the speaker, while the speech-synthesis-based
aligners are not. Nevertheless, the phone models used in the HMM-based aligner
were trained on data aligned by the the speech-synthesis-based aligner. These
results also suggest that the use of HMM-based along with speech-synthesis-
based annotation tools can be worthy as the former is more robust and the later
is more accurate.

3 Confidence Scores

In this section we propose some phone-based confidence scores for detecting
misalignments in the utterance. The goal is to locate regions of the speech signal
where the alignment method may have failed and that could benefit from human
intervention.

3.1 The Chosen Features

The alignment process provides a set of features that can be used as indicators
of annotation mismatch. This set of features is described below.

– DTW mean distance: mean distance between the features of the recorded
signal frames and the synthesized speech signal over the alignment path for
a given phone;

– DTW variance: variance of the mean distance between the features of the
recorded signal frames and the synthesized speech signal over the alignment
path for a given phone;

– DTW minimal distance: minimal distance between the features of the
recorded signal frames and the synthesized speech signal over the alignment
path for a given phone;
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– DTW maximal distance: maximal distance between the features of the
recorded signal frames and the synthesized speech signal over the alignment
path for a given phone;

– HMM mean distance: mean distance between the features of the recorded
signal frames and the phone model;

– HMM variance: variance of the distance between the features of the recorded
signal frames and the phone model;

– HMM minimal distance: minimal distance between the features of the
recorded signal frames and phone model;

– HMM maximal distance: maximal distance between the features of the
recorded signal frames and phone model

Each segment of the database is associated with a vector of features that will
be used to predict a confidence score for the alignment of that phone. To provide
some context we decided to include not only the feature vector of the current
phone but also the feature vectors of the previous and following segments.

We were now in the condition of performing the evaluation the reliability of
the different techniques that we propose to detect annotation problems.

Three different approaches will be evaluated: Classification and Regression
Trees (CART), Artificial Neural Networks (ANN) and Hidden Markov Models
(HMM).

3.2 Definition of Bad Alignment

A boundary between good and bad alignment is hard to define. Some researchers
assume that boundary errors larger than 10 miliseconds must be considered
misalignments, while others are more tolerant. As we explained before, the effect
of the error in the location of the boundaries may be different from segment to
segment, depending on its duration. Thus, we will use the duration-independent
feature proposed before to computed the accuracy of annotation tools: we will
assume that a misalignment occurs when OvR ≤ 0.75.

3.3 Classification and Regression Trees

To train a regression tree we have used the Wagon program, that is part of
Edinburgh Speech Tools[7]. This program can be used to build both classification
and regression trees, but in this problem it was used as a regression tool to predict
the values of the OvR based on the former features. We used a training set with
28000 segments and a test set with 10000 segments.

Since the leafs of the tree are the average value of OvR and its variance,
assuming a gaussian distribution in the leafs, we can compute the probability of
the having OvR with a value lower than the threshold defined in the previous
subsection. Let µ and σ be the average value of OvR and its standard deviation,
respectively, in a given leaf of the tree. Then, the probability of misalignment is
given by:

P (OvR ≤ 0.75|µ, σ) =
1√

2 · π · σ2

∫ 0.75

0
e− (x−µ)2

2·σ2 dx (3)
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We than had to apply a threshold to the resulting probability. By varying
these threshold we obtained a Precision/Recall curve represented as a dotted
line in Fig. 4.

3.4 Artificial Neural Networks

Using a neural network simulator developed at our lab, and the same feature
vectors used in the previous experiment, we trained a binary classifier, which
computes the probability of misalignment for each segment. As we did in the
trainning of the regression tree, we had to apply a threshold to the outputs of
the neural network. The variation of this threshold created the lower dashed line
of Fig. 4.

3.5 Hidden Markov Models

Two one-state models were created for each phonetic segment. A model for
aligned segments, and a model for the misaligned ones. Since the amount of
training data were not large enough to build context dependent models, we
had to choose a context-independent approach. However, we took into account
the influence of the different contexts in the models in some extent by using
four gaussian mixtures in each state. Each model was based on the feature vec-
tors described in 3.1. After model training, we performed a forced alignment
between the feature vector sequences and the model pairs trained for each pho-
netic segment. This experiment allowed us to find values for precision and recall
for each phonetic segment. We depict the experiment results based on phone
groups (Vowels, Liquids, Nasals, Plosives, Fricatives, Semi-Vowels and the Si-
lence), which is enough to show that the precision and recall values can vary
largely with the phone types in analysis.

Table 1. Best feature pairs for the multiple phonetic segment class transitions

Class Precision(%) Recall(%)
Vowels 73.2 69.8
Liquids 48.6 64.0
Nasals 82.0 67.7
Plosives 78.7 72.4

Fricatives 88.0 69.0
Semi-Vowels 44.9 67.5

Silence 97.3 87.8

Based on the previously trained models, we computed a score(HmmSore)
for each segment to precision-recall curves, like we did for CART and ANN. This
score was calculated using equation 4.

HmmScore =
P (x = Al|ModelAl)

P (x = Al|ModelAl) + P (x = Misal|ModelMisal)
(4)
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where P (x = Al|ModelAl) is the probability that segment x is aligned given the
model of aligned phones for that segment and P (x = Misal|ModelMisal)) is the
probability that segment x is misaligned given its model of misaligned phones.
The score values are between 0 and 1. We computed the upper curve of Fig. 4 by
imposing different thresholds to the score, like we had already done for the two
other approaches. It is important to point out that in this case we are detecting
the aligned segments rather than misaligned ones.

3.6 Results

The results depicted in Fig. 4 suggest the HMM approach outperforms all others
by far. The other two approaches are very similar, for some applications one
should choose CARTs, for others one should choose ANNs.
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Fig. 4. Plot of precision and recall of the proposed confidence measures

4 Conclusions

In the first part of the paper, we have explored the advantages of using an
HMM-based aligner together with an aligner based on speech-synthesis, and
we showed the increase of the accuracy of the combined system, and a new
measure of alignment accuracy was proposed. In the second part of the paper we
proposed and evaluated three new approaches to compute confidence measures
for phonetic annotation. In this part we realized that the approach using HMMs
is largely the best one.
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